12 February 2015

Notes - Biologic / quantum simple / dimensional flowers

         Mid-morning.  You and Carol had breakfast and read the paper. Neither of you slept well because of your persistent illnesses. If you are not better by tomorrow morning the plan is to return to the doctor’s office; this was Carol’s suggestion not yours. – Amorella

         0852 hours. I think she is hurting more than I am; when she suggested this last night I was more than reluctant but this morning, I think she is probably right. I should have recovered by now but this lingers on and sometimes feels like it did a few days ago. I had a piece of candy bar after breakfast and actually makes me feel better or more like taking a nap. I’ll opt for the nap.

         Mid-afternoon. You had a late lunch at Chipotle/Panera then stopped by for dessert at Graeter’s. You sat in the car facing north (toward the parking lot of Westchester/UC Hospital) watching the police clean up a fender bender accident just across the street; a further stop at the bank and home. – Amorella

         1620 hours. The Pilgrims come to mind with the time and unleash a history on why we are who we are as a 400 year old culture. A few minutes ago I was reading a BBC article suggesting we ought to more actively seek galactic aliens and one of the arguments is to send them the Internet to show as we are rather than set up a more formal ‘cleaned up’ introduction like we are applying for a job interview with the local branch of the normally reserved galactic empire. We have come a long way in four hundred years, but then, not so much depending your viewing angle.

         Merlyn’s dream is but one plausibility boy. What do you think would be the most surprising aspect of actually landing on planet one to focus on an archeological dig? – Amorella

         1635 hours. I think they might enjoy it more because it was not as they originally planned, which was to be included on a ‘secret’ project with their equivalent higher education system. At least that’s how I remember it presently.

         The ‘university’ does not exist as such orndorff. What we need to do here is to show that ‘government’ is not what exists. Imagine, if you will, that a 3D printer set up the ‘system’ – or a four-D printer for that matter. You have a species biologic and a cultural biologic to mimic pretty much what your biology does within one person. Take a break. Later, dude. 
Post. - Amorella


         1730 hours. Note – ThreePlanets Earth-alien information is quantum streamed ‘Essential One’ Unrouted [EOU].

         You are attempting to conjure up some sort of hierarchy of classified communication. This is unnecessary. ‘Unrouted’ means any information on this Merlyn dream does not exist unless the Director, Drenakite (a 470 year old female, a nearly naked and hairless sacerdotal priestess. From a human perspective Drenakite appears to be a healthy older woman who weighs about 134 pounds. She wears a long silk-like wrap-around dark green dress from waist to ankles, open-toed leather sandals and a white sailor’s cap whose circular bill can be turned down. Her appearance and manner is similar to a Buddhist monk. Drenakite is the lone refurbrisher of Onesixanzero; what Drenakite, Cleric of ThreePlanets, knows is that Onesixanzero is a singular biochemical and tri-quantum field thought-reason-emotional analysis speculator based on advanced marsupial and human elements of consciousness and unconscious behaviors), Ship and Onesixanzero collectively say it does. – Post. – Amorella


         1800 hours. This is coming together and is simpler to implement than on Earth.

         You had cereal and a small piece of left over pizza for supper; Carol had warmed up veggie soup. You watched “The Mentalist” and “Mysteries of Laura” as well as NBC News before Carol went upstairs and you returned to your MacAir.

         2203 hours. I saw this on Quora tonight. It is an interesting question and response.

** **
How many dimensions are there in our universe?

Barak Shoshany, Graduate Student at Perimeter Institute for Theoretical Physics 82 upvotes by Inna Vishik (Postdoctoral fellow @ MIT physics department), Nikita Butakov (Nanophotonics PhD student, UC Santa Barbara), Deep Sarkar (Ph.D. Research Scholar in Physics at TIFR), Kevin Peter Hickerson (PhD), Abhijeet Borkar (PhD student in Physics (Astrophysics)), Scholar in Physics at TIFR), Kevin Peter Hickerson (PhD), Chase Quinton, Aram Tadevosyan, Asher Syed, Olivier Garamfalvi, Henrik Oldcorn, Leopold III, Sandar Lim, Rogelio Lorenzo, Mithil Kamble, Listra Yehezkiel Ginting, Marc Serra, Akilesh Potti, Vijay Chaudhary, Chris Craddock, Glenn Yu.

*
Let us begin by defining what is meant by "dimension" when one says "our universe has dimensions". The number of dimensions in spacetime is, roughly speaking, the number of coordinates required to specify a point in spacetime.

According to this definition, there are exactly 4 dimensions that we know of: one of time and three of space. The time dimension needs no explanation; the value of the time coordinate can be, for example, "1/1/2015, 10:00:00 AM EST". The three space dimensions are, intuitively, length, width and height.

Some speculative theories predict, require or postulate additional dimensions, but their exact number and properties vary from theory to theory, and there is no proof that any of these theories are actually correct.

In general, speculative extra dimensions in these speculative theories are dimensions of space, although some theories postulate an extra time dimension.

There are also different explanations as to why we cannot detect the speculative extra dimensions. One explanation is that the extra dimensions are "compact", i.e. they are too small for us to detect them. If they are not compact then they are usually called "large" extra dimensions, and it is postulated that we are restricted to a particular 4-dimensional surface within the higher-dimensional universe (or multiverse).

Note that science fiction writers often use the word "dimension" when they actually mean to say "parallel universe". That usage is completely incorrect, but is unfortunately nevertheless still popular.

Some more technical stuff:

Spacetime is described mathematically using a mathematical structure called a manifold (usually a pseudo-Riemannian manifold). When physicists say that spacetime has dimensions, they specifically mean that the manifold used to describe spacetime is -dimensional. The dimension of a manifold has an exact and rigorous definition.

Physics makes use of a variety of other abstract mathematical structures, which have their own definition of dimension. These structures may have any number of dimensions between zero and infinity (including non-integer dimensions). It should be stressed that, although the word "dimension" is used in the context of these structures, it is not the same as the dimension of spacetime, which is defined differently.


Selected and edited from QuoraDOTcom (12 February 2015)

** **

         Parallel universe is always your meaning, which is in common with the use in science fiction. However, why does the word ‘parallel’ have to be used? Why can’t there be non-parallel universe? - Amorella   
      
         2224 hours. I have been researching your question and find I was somewhat confused. However, I found a source that clarifies this for me and I should note this to remind me to think the question through. I usually resort to Wikipedia to settle my mind into a thought; no exception here.

** **
The multiverse (or meta-universe) is the hypothetical set of infinite or finite possible universes (including the Universe we consistently experience) that together comprise everything that exists: the entirety of space, time, matter, and energy as well as the physical laws and constants that describe them. The various universes within the multiverse are sometimes called parallel universes or "alternate universes".

The structure of the multiverse, the nature of each universe within it and the relationships among the various constituent universes, depend on the specific multiverse hypothesis considered. Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology and fiction, particularly in science fiction and fantasy. In these contexts, parallel universes are also called "alternate universes", "quantum universes", "interpenetrating dimensions", "parallel dimensions", "parallel worlds", "alternate realities", "alternate timelines", and "dimensional planes," among others. The term 'multiverse' was coined in 1895 by the American philosopher and psychologist William James in a different context.

The multiverse hypothesis is a source of debate within the physics community. Physicists disagree about whether the multiverse exists, and whether the multiverse is a proper subject of scientific inquiry. Supporters of one of the multiverse hypotheses include Stephen Hawking, Steven Weinberg, Brian Greene, Max Tegmark, Alan Guth, Andreia Linde, Michio Kaku, David Deutsch, Leonard Sussking, Raj Pathria, Sean Carroll, Alex Vilenkin, Laura Mersini-Houghton, and Neil deGrasse Tyson.
In contrast, critics such as Jim Baggott, David Gross, Paul Steinhardt, George Ellis and Paul Davies have argued that the multiverse question is philosophical rather than scientific, that the multiverse cannot be a scientific question because it lacks falsifiability, or even that the multiverse hypothesis is harmful or pseudoscientific.
Multiverse hypotheses in physics

Categories

Max Tegmark and Brian Greene have devised classification schemes that categorize the various theoretical types of multiverse, or types of universe that might theoretically comprise a multiverse ensemble.

Max Tegmark's four levels

Cosmologist Max Tegmark has provided a taxonomy of universes beyond the familiar observable universe. The levels according to Tegmark's classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels, and they are briefly described below.

Level I: Beyond our cosmological horizon

A generic prediction of chaotic inflation is an infinite ergodic universe, which, being infinite, must contain Hubble volumes realizing all initial conditions.

Accordingly, an infinite universe will contain an infinite number of Hubble volumes, all having the same physical laws and physical constants. In regard to configurations such as the distribution of matter, almost all will differ from our Hubble volume. However, because there are infinitely many, far beyond the cosmological horizon, there will eventually be Hubble volumes with similar, and even identical, configurations. Tegmark estimates that an identical volume to ours should be about 1010115 meters away from us. Given infinite space, there would, in fact, be an infinite number of Hubble volumes identical to ours in the Universe. This follows directly from the cosmological principle, wherein it is assumed our Hubble volume is not special or unique.

Level II: Universes with different physical constants


"Bubble universes": every disk is a bubble universe (Universe 1 to Universe 6 are different bubbles; they have physical constants that are different from our universe); our universe is just one of the bubbles.

In the chaotic inflation theory, a variant of the cosmic inflation theory, the multiverse as a whole is stretching and will continue doing so forever, but some regions of space stop stretching and form distinct bubbles, like gas pockets in a loaf of rising bread. Such bubbles are embryonic level I multiverses. Linde and Vanchurin calculated the number of these universes to be on the scale of 101010,000,000.

Different bubbles may experience different spontaneous symmetry breaking resulting in different properties such as different physical constants. This level also includes John Archibald Wheeler’s oscillatory universe theory and Lee Smolin’s fecund universes theory.

Level III: Many-worlds interpretation of quantum mechanics

Hugh Everett’s many-worlds interpretation (MWI) is one of several mainstream interpretations of quantum mechanics. In brief, one aspect of quantum mechanics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations, each with a different probability. According to the MWI, each of these possible observations corresponds to a different universe. Suppose a die is thrown that contains six sides and that the numeric result of the throw corresponds to a quantum mechanics observable. All six possible ways the die can fall correspond to six different universes.
Tegmark argues that a level III multiverse does not contain more possibilities in the Hubble volume than a level I-II multiverse.

In effect, all the different "worlds" created by "splits" in a level III multiverse with the same physical constants can be found in some Hubble volume in a level I multiverse.

Tegmark writes that "The only difference between Level I and Level III is where your dopplelgängers reside. In Level I they live elsewhere in good old three-dimensional space. In Level III they live on another quantum branch in infinite-dimensional Hilbert space." Similarly, all level II bubble universes with different physical constants can in effect be found as "worlds" created by "splits" at the moment of spontaneous symmetry breaking in a level III multiverse.
Related to the many-worlds idea are Richard Feynman’s multiple histories interpretation and H. Dieter Zeh’s many-minds interpretation.

Level IV: Ultimate ensemble

The ultimate ensemble or mathematical universe hypothesis is the hypothesis of Tegmark himself. This level considers equally real all universes that can be described by different mathematical structures. Tegmark writes that “abstract mathematics is so general that any Theory of Everything that is definable in purely formal terms (independent of vague human terminology) is also a mathematical structure. For instance, a TOE involving a set of different types of entities (denoted by words, say) and relations between them (denoted by additional words) is nothing but what mathematicians call a set-theoretical model, and one can generally find a formal system that it is a model of." He argues this "implies that any conceivable parallel universe theory can be described at Level IV" and "subsumes all other ensembles, therefore brings closure to the hierarchy of multiverses, and there cannot be say a Level V."
Jurgen Schmidhuber, however, says the "set of mathematical structures" is not even well-defined, and admits only universe representations describable by constructive mathematics, that is, computer programs. He explicitly includes universe representations describable by non-halting programs whose output bits converge after finite time, although the convergence time itself may not be predictable by a halting program, due to Kurt Godel’s limitations. He also explicitly discusses the more restricted ensemble of quickly computable universes.

Brian Greene's nine types

American theoretical physicist and string theorist Brian Greene discussed nine types of parallel universes:

Quilted
The quilted multiverse works only in an infinite universe. With an infinite amount of space, every possible event will occur an infinite number of times. However, the speed of light prevents us from being aware of these other identical areas.

Inflationary
The inflationary multiverse is composed of various pockets where inflation fields collapse and form new universes.

Brane
The brane multiverse follows from M-theory and states that each universe is a 3-dimensional brane that exists with many others. Particles are bound to their respective branes except for gravity.
Cyclic
The cyclic multiverse has multiple branes (each a universe) that collided, causing Big Bangs. The universes bounce back and pass through time, until they are pulled back together and again collide, destroying the old contents and creating them anew.

Landscape
The  landscape multiverse relies on string theory's Calabi-Yau shapes. Quantum fluctuations drop the shapes to a lower energy level, creating a pocket with a different set of laws from the surrounding space.

Quantum
The quantum multiverse creates a new universe when a diversion in events occurs, as in the many-worlds interpretation of quantum mechanics.

Holographic
The holographic multiverse is derived from the theory that the surface area of a space can simulate the volume of the region.

Simulated
The simulated multiverse exists on complex computer systems that simulate entire universes.

Ultimate
The ultimate multiverse contains every mathematically possible universe under different laws of physics.

Cyclic theories

In several theories there is a series of infinite, self-sustaining cycles (for example: an eternity of Big Bang crunches).

M-theory

A multiverse of a somewhat different kind has been envisaged within string theory and its higher-dimensional extension, M-theory. These theories require the presence of 10 or 11 spacetime dimensions respectively. The extra 6 or 7 dimensions may either be compactified on a very small scale, or our universe may simply be localized on a dynamical (3+1)-dimensional object, a D-brane. This opens up the possibility that there are other branes which could support "other universes". This is unlike the Universes in the “quantum multiverse”, but both concepts can operate at the same time.

Some scenarios postulate that our big bang was created, along with our universe, by the collision of two branes.

Black-hole cosmology


A black-hole cosmology is a cosmological model in which the observable universe is the interior of a black hole existing as one of possibly many inside a larger universe. This includes the theory of white holes of which are on the opposite side of space time. While a black hole sucks everything in including light, a white hole releases matter and light, hence the name "white hole".

Anthropic principle

The concept of other universes has been proposed to explain how our own universe appears to be fine-tuned for conscious life as we experience it. If there were a large (possibly infinite) number of universes, each with possibly different physical laws (or different fundamental physical constants), some of these universes, even if very few, would have the combination of laws and fundamental parameters that are suitable for the development of matter, astronomical structures, elemental diversity, stars, and planets that can exist long enough for life to emerge and evolve. The weak anthropic principle could then be applied to conclude that we (as conscious beings) would only exist in one of those few universes that happened to be finely tuned, permitting the existence of life with developed consciousness. Thus, while the probability might be extremely small that any particular universe would have the requisite conditions for life (as we understand life) to emerge and evolve, this does not require intelligent design as an explanation for the conditions in the Universe that promote our existence in it.

Search for evidence

Around 2010, scientists such as Stephen M. Feeney analyzed Wilkinson Microwave Anisotropy Probe (WMAP) data and claimed to find preliminary evidence suggesting that our universe collided with other (parallel) universes in the distant past. However, a more thorough analysis of data from the WMAP and from the Planck satellite, which has a resolution 3 times higher than WMAP, failed to find any statistically significant evidence of such a bubble universe collision. In addition, there is no evidence of any gravitational pull of other universes on ours.

Examples of criticisms
*
For a start, how is the existence of the other universes to be tested? To be sure, all cosmologists accept that there are some regions of the universe that lie beyond the reach of our telescopes, but somewhere on the slippery slope between that and the idea that there are an infinite number of universes, credibility reaches a limit. As one slips down that slope, more and more must be accepted on faith, and less and less is open to scientific verification. Extreme multiverse explanations are therefore reminiscent of theological discussions. Indeed, invoking an infinity of unseen universes to explain the unusual features of the one we do see is just as ad hoc as invoking an unseen Creator. The multiverse theory may be dressed up in scientific language, but in essence it requires the same leap of faith.

— Paul Davies, A Brief History of the Multiverse
*
As skeptical as I am, I think the contemplation of the multiverse is an excellent opportunity to reflect on the nature of science and on the ultimate nature of existence: why we are here… In looking at this concept, we need an open mind, though not too open. It is a delicate path to tread. Parallel universes may or may not exist; the case is unproved. We are going to have to live with that uncertainty. Nothing is wrong with scientifically based philosophical speculation, which is what multiverse proposals are. But we should name it for what it is.

— George Ellis, Scientific American, Does the Multiverse Really Exist?
*
[A]n entire ensemble is often much simpler than one of its members. This principle can be stated more formally using the notion of algorithmic information content. The algorithmic information content in a number is, roughly speaking, the length of the shortest computer program that will produce that number as output. For example, consider the set of all integers. Which is simpler, the whole set or just one number? Naively, you might think that a single number is simpler, but the entire set can be generated by quite a trivial computer program, whereas a single number can be hugely long. Therefore, the whole set is actually simpler...

(Similarly), the higher-level multiverses are simpler. Going from our universe to the Level I multiverse eliminates the need to specify initial conditions, upgrading to Level II eliminates the need to specify physical constants, and the Level IV multiverse eliminates the need to specify anything at all.... A common feature of all four multiverse levels is that the simplest and arguably most elegant theory involves parallel universes by default. To deny the existence of those universes, one needs to complicate the theory by adding experimentally unsupported processes and ad hoc postulates: finite space, wave function collapse and ontological asymmetry. Our judgment therefore comes down to which we find more wasteful and inelegant: many worlds or many words. Perhaps we will gradually get used to the weird ways of our cosmos and find its strangeness to be part of its charm.

— Max Tegmark, "Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations." Scientific American 2003 May;288(5):40–51
*
A pervasive idea in fundamental physics and cosmology that should be retired: the notion that we live in a multiverse in which the laws of physics and the properties of the cosmos vary randomly from one patch of space to another. According to this view, the laws and properties within our observable universe cannot be explained or predicted because they are set by chance. Different regions of space too distant to ever be observed have different laws and properties, according to this picture. Over the entire multiverse, there are infinitely many distinct patches. Among these patches, in the words of Alan Guth, "anything that can happen will happen—and it will happen infinitely many times". Hence, I refer to this concept as a Theory of Anything. Any observation or combination of observations is consistent with a Theory of Anything. No observation or combination of observations can disprove it. Proponents seem to revel in the fact that the Theory cannot be falsified. The rest of the scientific community should be up in arms since an unfalsifiable idea lies beyond the bounds of normal science. Yet, except for a few voices, there has been surprising complacency and, in some cases, grudging acceptance of a Theory of Anything as a logical possibility. The scientific journals are full of papers treating the Theory of Anything seriously. What is going on?

— Paul Steinhardt, "Theories of Anything" edge.com'
*
A Theory of Anything is useless because it does not rule out any possibility and worthless because it submits to no do-or-die tests. (Many papers discuss potential observable consequences, but these are only possibilities, not certainties, so the Theory is never really put at risk.)

— Paul Steinhardt, "Theories of Anything" edge.com'
*
Multiverse hypotheses in philosophy and logic

Modal realism

Possible worlds are a way of explaining probability, hypothetical statements and the like, and some philosophers such as David Lewis believe that all possible worlds exist, and are just as real as the actual world (a position known as modal realism).

Trans-world identity

A metaphysical issue that crops up in multiverse schema that posit infinite identical copies of any given universe is that of the notion that there can be identical objects in different possible worlds. According to the counterpart theory of David Lewis, the objects should be regarded as similar rather than identical.

Fictional realism

The view that because fictions exist, fictional characters exist as well. There are fictional entities, in the same sense in which, setting aside philosophical disputes, there are people, Mondays, numbers and planets.
*
Selected and edited from Wikipedia – Multiverse

** **

         You have a lot of material to consider here; but consider it you must because the marsupial-humanoids and the humans will have a discussion on what this means in terms of the use of quantum informational systems within ThreePlanets machinery. – Amorella

         2239 hours. I understand this will be a small part but it will contain the principles of how things work in terms of this archeological dig setting.

         When you’ve cleaned this up, post. – Amorella

         2329 hours. This took a bit of work, but it allows me to read more carefully and consider the points. However, I will have to reread this a time or two. This is very interesting stuff.  I love these considerations. Flowers they are. - rho

No comments:

Post a Comment